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Large AI Model Changes The World

Google Trends of ChatGPT

1. Statistica.com, https://www.statista.com/statistics/1366930/chatgpt-google-search-weekly-worldwide/, accessed on May 26th
2. Twitter Watcher.Guru, https://watcher.guru/news/how-long-did-it-take-chatgpt-to-reach-1-million-users, accessed on May 31th 

ChatGPT is the fastest app reaches 1M Users
Only has 1 feature, Chat with GPT
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Large AI Model Will Change The World Virtually

Alibaba - Tongyi

User Large AI Models
Computer (Desktop or Mobile) 

Baidu

Google Bard
Claude

Closed Sourced Open Sourced

VicunaChatGPT + Bing

AutoGPTGenerative Agents
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How does AI Model interact with physical world?

User Large AI Models
Computer (Desktop or Mobile) 

Physical 
World
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How does AI Model interact with physical world?

User Large AI Models
Computer (Desktop or Mobile) 

Physical 
World

Large AI ModelsRobot! Brain
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Autonomous Driving Vehicle Is Also A Robot

Understand the 3D world Planning orienated
Data creation

Decide what to do Control in realistic space
Interact with the world

Autonomous Driving
Understand and Act in 3D World

Bus Taxi

CarrierHeavy Truck
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Large-scale deployment of AV across China

50M+ orders

Carrier
Largest Autonomous Driving in logistic

200+ Cities

800+  AutoVehicle

Heavy Truck
Preliminary Exploration

Built 20+ Auto-Truck

Cainiao, Shentong

Release in 2027

Truck
Research -> Product

100M+km test milage

50+ routes across China

30+ test vehicles

Cus-
tome
r

Shop Warehous

e

Carrier Truck Heavy Truck

Cus-
tome
r

ShopWarehous

e

CarrierTruck
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PART I: General introduction 
of Autonomous Driving 
System (ADS)

Source: STDevCon19_7.5_Overview of ADAS-Active-Safety



Automotive ADAS Systems
Overall Automotive ADAS System
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Automotive ADAS Systems
ADAS Overview



Overview of ADAS Technologies

Power 
Supply/Management

Targets s



ADAS Sensors - Needed for Perception

LIDAR

Radar

Cameras GNSS antenna

Ultra-Sonics
Central Computer 

Wheel Odometry



The 5 Levels of Vehicle Automation

2
Partial 

Automation 
(Level 2)

Driver monitors 
system at all 

times

4
High 

Automation 
(Level 4)

Driver is not 
required for 
specific use 

cases

Learning to Drive
• Systems Networking
• Sensor Fusion
• Distance Measurement
• Traffic Sign Recognition
• Lane Reconstruction
• Free-path Definition
• Precise Positioning
• Real-time Mapping
• Driving Rules 

Implementation
• Critical Arbitration

Adding Senses
• Accelerometers and Gyro
• Steering Wheel Angle
• Ultrasonic sensors
• Front Radar Sensor
• Blind Spot sensor
• Rear View Cameras
• Front View Cameras
• Surround View Cameras

0
No Automation 

(Level 0)

Driver in control

5
Full 

Automation 
(Level 5)

No Driver 
Required

1
Driver Assistance 

(Level 1)

Driver in control

3
Conditional 
Automation 

(Level 3)

Driver needed to 
be able to resume 

control

Levels 0-2 Human driver monitors the driving 
environment

Levels 3-5 Automated driving “system” monitors 
the driving environment

Source: SAE standard J3016



Sensor Fusion is Key to Autonomous

Source: Woodside Capital Partners (WCP), “Beyond the Headlights: ADAS and Autonomous Sensing”, September 2016



Automotive ADAS Systems
ADAS Vehicle Architectures



Distributed vs Centralized Processing

• Distributed Interfaces
• ETH, SPI, I2C, CAN, CAN-FD

• RADAR, Ultrasonic, V2X, IMU, Wheel Odomerty, GNSS

• MIPI(CSI-2), GMSL(Maxim), FPD-Link(TI), PCIe, HDBaseT(Valens)

• Video Cameras?

• Lidar?
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LOS: Line-of-Sight
NLOS: Non-Line-of-Sight

• Centralized Interfaces
• ETH, SPI, I2C, CAN, CAN-FD

• V2X, IMU, Wheel Odomerty, GNSS

• MIPI(CSI-2), GMSL(Maxim), FPD-Link(TI), PCIe, HDBaseT(Valens)

• Radar, Ultrasonic

• Cameras

• Lidar?
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Distributed vs Centralized Processing

Source: 2018 IHS Markit – “Autonomous Driving-The Changes to come”

Source: ADI

• What are the Data rates requirements for each sensor?
• Centralized (i.e. SERDES?) vs Distributed (i.e. ETH?)

• Example: 4-5 Corner Radars are utilized in high end/premium vehicles.



Automotive ADAS Systems
Vision (Cameras) System



Camera• Essential for correctly perceiving environment

• Richest source of raw data about the scene - only 
sensor that can reflect the true complexity of the 
scene.

• The lowest cost sensor as of today

• Comparison metrics:
• Resolution
• Field of view (FOV)
• Dynamic range

• Trade-off between resolution and FOV?



Camera-Stereo• Enables depth estimation from image data

Left and right images

Find a point in 3D by triangulation!

Source: Sanja Fidler, CSC420: Intro to Image Understanding

All points on projective line to P map to p

One camera
Add a 
second 
camera



The Next Phase for Vision Technology

• From sensing to comprehensive perception

• Machine learning used already for object sensing

• Autonomous driving needs
• Path planning based on holistic cues
• Dynamic following of the drivable area

• Deep learning is now being applied

150°

30°

1

50°
2

3



Machine Vision: ST & Mobileye

• Detection of driving lanes
• Recognition of traffic signs
• Detection of pedestrians and cyclists
• Seeing obstacles how the human eye sees 

them
• Adapting cruise speed
• Emergency braking when car ahead slows 

suddenly

EyeQ3™ 3rd Generation vision processor EyeQ4™ 4th Generation enables

• Detection of more objects, more precisely
• More features required for automated driving 

Free-space Estimation, Road Profile 
Reconstruction

• Monitoring of environmental elements (fog, ice,
rain) and their safety impact

• Detailed understanding of the road conditions 
allowing automatic suspension and steering 
adjustment

• Highly automated vehicles

Partnership

EyeQ5TM
The Road to Full Autonomous Driving: Mobileye and ST to Develop EyeQ®5 

SoC targeting Sensor Fusion Central Computer for Autonomous VehiclesEyeQ5™



LiDAR Technology Overview

distance

Photon

Measured 
distance =

Speed of 
lightxPhoton travel

time /2

Emitter

Receiver

• LiDAR (light detecting and ranging, or “light radar”) sensors send 
one or more laser beams at a high frequency and use the Time-of- 
Flight principle to measure distances. LiDAR capture a high- 
resolution point cloud of the environment.

• Can be used for object detection, as well as mapping an
environment
• Detailed 3D scene geometry from LIDAR point cloud

• LiDAR uses the same principal as ToF sensor, 
but at much longer distances, minimum 75M for 
“near field” and 150-200M for “far field”.

Targets

2 µsec
2-10 nsec



Automotive ADAS Systems
LiDAR System



LiDAR Techniques
• There are multiple techniques currently under evaluation for LiDAR 

including rotating assembly, rotating mirrors, Flash (single Tx 
source, array Rx), scanning MEMS micro-mirrors, optical phased 
array.

• From a transmitter/receiver (Tx/Rx) perspective the following 
technologies need to be developed or industrialized for automotive.
• MEMS Scanning Micro-mirror technologies
• SPAD (Single Photon Avalanche Detectors) - Rx
• 3D SPAD - Rx
• Smart GaN (Gallium nitride)

• Comparison metrics:
• Number of beams: 8,16, 32, and 64 being common sizes
• Points per second: The faster, the more detailed the 3D point cloud can 

be
• Rotation rate: higher rate, the faster the 3D point clouds are updated
• Detection Range: dictated by the power output of the light source
• Field of view: angular extent visible to the LIDAR sensor

Upcoming: Solid state LIDAR!



LiDAR Summary
• Autonomous vehicles have been around for quite some time but only now the

technologies are available for practical implementations

• No single sensor solution exists to cover all aspects – range, accuracy, 
environmental conditions, color discrimination, latency etc.
• Multi-sensor fusion and integration will be a must

• Each technology attempts to solve the overall problem while having multiple limitations

• Many LiDAR solutions (technologies) are available or being proposed with no 
clear winners

• Market is still in very early stage of development and experimentation

• When and which technology or system will be widely adopted and mass 
production starts is still unknown



Automotive ADAS Systems
Radar Systems



RADAR Technology Overview
• RADAR (RAdio Detection and Ranging) is one necessary sensor for ADAS (Advanced Driver Assistance 

System) systems for the detection and location of objects in the presence of interference; i.e., noise, clutter, 
and jamming.

• Robust Object Detection and Relative Speed Estimation

• Transmit a radio signal toward a target, Receive the reflected signal energy from target

• The radio signal can the form of “Pulsed” or “Continuous Wave”

• Works in poor visibility like fog and precipitation!

• Automotive radars utilize Linear FM signal, Frequency 
Modulated Continuous Wave (FMCW)
• FM results in a shift between the TX and RX signals that 

allows for the determination of time delay, Range and 
velocity.

distance

Range (R) =
Speed of 

propagation in 
medium (c in air)

xSignal travel
time /2

Targets

s
Gt

Ar



RADAR Techniques

Source: Strategy Analytics Lunch & Learn the Market Session European Microwave Week 2013

• Comparison metrics:
• Range
• Field of view
• Position and speed accuracy

• Configurations:
• Wide-FOV: Short Range
• Narrow-FOV: Long Range



Automotive Radar Vs. Automation Levels
< 2014
Level 1 

Driver Assistance

2016
Level 2 

Partial Automation

2018
Level 3 

Conditional Automation

2019 / 2020
Level 4 

High Automation

> 2028
Level 5 

Full Automation

Object detection Object detection High resolution 
target separation

4x SRR
1x LRR

3D detection 360° object recognition

2x USRR
4x SRR-MRR

2x LRR
2x SRR 2x SRR

1x LRR
4x SRR-MRR

1x LRR

Applications 
BSD, LCA

Applications
BSD, RCW, LCA 

ACC, AEB

Applications
BSD, RCW, LCA 

FCW, RCTA 
ACC, AEB

Applications 
BSD, LCA, RCTA
AEB pedestrian 

ACC, AEB

Applications 
AVP, PA

BSD, LCA, RCTA
AEB pedestrian 

ACC, AEB

BSD - Blind Sport Detection 
LCA - Lane Change Assist 
RCW - Rear Collision Warning

ACC - Adaptive Cruise Control
AEB - Automatic Emergency Breaking 
FCW - Forward Collision Warning

RCTA - Rear Cross Traffic Alert 
AVP - Automated Valet Parking 
PA - Parking Assist

USRR - Ultra Short Range Radar 
SRR - Short Range Radar
MRR - Medium Range Radar 
LRR - Long Range Radar

Source: Rodhe & Schwarz - Automotive radar technology, market and test requirements, White paper – Oct 2018 (Salvo S. presentation)



Automotive ADAS Systems
GNSS/IMU System



GNSS/IMU Positioning
• Global Navigation Satellite Systems and

Inertial Measurement Units

• Direct measure of vehicle states
• Positioning, velocity, and time (GNSS)

• Varying accuracies: Real-time Kinematic (RTK- 
short base line), Precise Point Positioning (PPP), 
Differential Global Positioning System (DGPS), 
Satellite-based augmentation system (SBAS- 
Ionospheric delay correction)

• Angular rotation rate (IMU)
• Acceleration (IMU)
• Heading (IMU, GPS)

GNSS/IMU



• Lane detection

• Positioning data for V2X sharing

• Collision avoidance

• Autonomous parking

• Autonomous driving

• eCall accident location

GNSS/IMU Positioning

0

Multi Band 
L1, L2 and L5,

i.e. GPS

<30cm

More Precision Enables More Safety Features
Precise Positioning: Towards Autonomous Driving 

Precise Positioning to enable < 30cm precision
GPS

GLONASS
BeiDou 
Galileo 
QZSS

SBAS
Carrier Phase 
RTK
PPP

Sensor fusion



Higher integrity requirements across safety-critical applications

• Semi- and Autonomous driving safety-related 
applications requirements increase
• Higher safety levels
• Added redundancy
• More Robustness & integrity
• Security

• Teseo APP (ASIL Precise Positioning) GNSS receiver, 
new sensor based on ISO26262 concept with unique 
Absolute and Safe positioning information 
complementing relative positioning other sensor 
inputs(i.e. LIDAR, RADAR, etc.)

ST‘s GNSS Receiver Family 
for ADAS and AD

Precise GNSS is a Critical ADAS Sensor

Courtesy of Hexagon PI

Bad Solution 
Declared Good 
HAZARD!

Bad Solution 
Detected
SAFE FAILURE

Good Solution 
Confirmed 
SAFE 
OPERATION

HPL – Horizontal Protection Level
VPL – Vertical Protection Level



GNSS Accuracy in Automotive Environment (using PPP – Precise Point Positioning)
Precise GNSS is a Critical ADAS Sensor

Single Frequency 
(i.e. L1) multi- 
constellation/code- 
phase(1msec 
modulation signal)

Multi Frequency (i.e. 
L1, L2) multi- 
constellation/carrier- 
phase

APP: ASIL Precise Positioning 
SWPE: Software Positioning Engine



GNSS Integrity – Protection Levels
Precise GNSS is a Critical ADAS Sensor



Automotive ADAS Systems
V2X System



Vehicle-to-Everything (V2X)

V2X

V2V
Vehicle-to-

Vehicle

V2I
Vehicle-to-

Infrastructure

V2D
Vehicle-to- 

Device/object

V2P
Vehicle-to- 
Pedestrian

V2M
Vehicle-to- 
Motorcycle
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EIRP: Effective Isotropic Radiated Power
ITS: Intelligent Transportation Systems

Source: Federal Communications Commission FCC 03-324

• BSM (V2V)

• MAP Message (V2I)

• SPAT (V2I)

• TX Power +20dBm

5.915 5.925

• Road authorities and 
public agencies 
primarily responsible 
for usage

• Control Channel, Advertises 
and indicates how to access 
services on other “Service 
channels”



DSRC

NLOS

• Wireless Access in Vehicular Environments 
(WAVE)

• Amendment to IEEE 802.11-2012 to support WAVE/DSRC
• no authentication, no access point/no association
• 5.8 – 5.9 GHz OFDM

• Fast Network Acquisition & low 
latency (<50msec)

• Priority for Safety Applications
• Interoperability
• Security and Privacy (ensured through

a root certification system)

• Broadcasts BSMs 10 times per second
• Transmit power are about 100mW (20dBm 

@Antenna Port - Per IEEE802.11-D.2.2 
Transmit power level) with a nominal range of 
300m (360o coverage)

• DSRC units share the same channel



C-V2X Basics
• C-V2X is a V2X radio layer:

• C-V2X is Device-to-Device (D2D) communication 
service added to the LTE Public Safety ProSe 
(Proximity Services) Services

• C-V2X makes use of the D2D interface – PC5 
(aka Side Link) for direct Vehicle-to-Everything 
communication

• C-V2X takes the place of DSRC radio layer in 
relevant regions

• V2V, V2I and V2P

ITS Layers Remain Unchanged!



C-V2X Basics
• C-V2X Transmission Mode 4:

• Mode 4 – Stand alone, distributed
• Uses GNSS for location and time for synchronization

Transmission Mode 4

PC5



C-V2X Basics
• Transmission Mode 4:

• Out of Coverage operation: The transmitting 
vehicle is not connected to the network

• No SIM card or inter-operator collaboration is 
required

• Each vehicle performs its own scheduling and 
allocation

• No dependency on inter-vehicle components 
(eNB, Allocation Server etc…)

• Mandatory for SAE, ETSI

PC5

PC5PC5

Transmission Mode 4

PC5



C-V2X Air Interface

• C-V2X is based on LTE (4G) uplink transmission - SC-
FDMA (Single 
Carrier Frequency Division Multiple Access) signal:
• A single carrier multiple access technique which has similar 

structure and performance to OFDMA
• Utilizes single carrier modulation and orthogonal frequency 

multiplexing using DFT-spreading in the transmitter and frequency 
domain equalization in the receiver

• A salient advantage of SC-FDMA over OFDM/OFDMA is low Peak-
to- Average Power Ratio (PAPR). Enables efficient transmitter and 
improved link budget



In Summary
Both Technologies will do the JOB!

But:
• Industry is waiting for regulatory certainty, Government 

Mandate is preferred!
• C-V2X has to reach automotive production maturity
• Implementation and deployment will depend on OEM system 

architecture
• The market will demand standalone V2X module for OEMs 

and aftermarket because V2X is a safety critical sensor.
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Automotive ADAS Systems
Sensor Fusion Example



Multi-sensor Fusion for State Estimation

Source: “State Estimation and Localization for Self-Driving Cars”, Coursera by University of Toronto

This is a rule based fusion example, 
we will see another fusion later



PART II: Reducing Human 
Efforts in Visual Perception 



Autonomous Driving Lab, DAMO Academy

Carrier
Largest Autonomous Driving in logistic

200+ Cities

800+ AutoVehicle

50M+ orders

Heavy Truck
Preliminary Exploration

Built 20+ Auto-Truck

Cainiao, Shentong

Release in 2027

Truck
Research -> Product

100M+km test milage

50+ routes across China

30+ test vehicles

Custo
mer

Local Center

Carrier Truck Heavy Truck

Custo
mer

LocalCenter

CarrierTruck
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Autonomous Driving Vehicle Is Also A Robot

Understand the 3D world Planning orienated
Data creation

Decide what to do Control in realistic space
Interact with the world

Autonomous Driving
Understand and Act in 3D World

Bus Taxi

CarrierHeavy Truck

51



Common Framework of Robotic System

Understand the 3D world Planning
Data creation

Decide what to do Control in realistic space
Interact with the world

52

Robot!



My Research Focus: Perception + Imagination

Understand the 3D world Planning
Data creation

Decide what to do Control in realistic space
Interact with the world

53

Robot
My Research Focus



My Talk Focus: Perception

Understand the 3D world Planning
Data creation

Decide what to do Control in realistic space
Interact with the world

54

Robot
My Talk Focus



What is Visual Perception?

Localization

Object

Semantic

55

RGB Cam. Images

LiDAR Sparse PCDs

Dense PCDsDepth Cam.



Visual Perception in 3D

AI Models

RGB Cam. Images

LiDAR Sparse PCDs

Dense PCDsDepth Cam.

Localization

Object

Semantic

56



Convolutional neural network



Convolutional neural network



Supervised Learning in Visual Perception

Manual Design Architectures Large-scale Annotation
59



What are Key Challenges in Supervised Visual Perception?

1. Large Efforts in Architecture Design 2. Large Efforts in Data Annotation

60



Heavy Human Efforts in Visual Perception

ML Expert 
• designing network
• experiments
• maintaining system
• integration and etc.
Cost: 1 Million per person
Output: 1-2 Model per year

3D Data Annotation 
• Low unit price
• Large-scale data
• > 10 Million annotation
Company Cost
> 40 Million per year

Key Challenge 1: Large Efforts in Architecture Design Key Challenge 2: Large Efforts in Data Annotation

61

Heavy Efforts Hinder 
Large-Scale Deployment!



Reducing Human Efforts in Visual Perception

EvalNAS, ICLR 20
LR, CVPR 21
SuperNet, TPAMI 22
…

Address Challenge 1: Large Efforts in Architecture Design
- Identifying why NAS cannot surpass random search
- Our Landmark Regularization solution to address

62

We will not cover it in this lecture



Reducing Human Efforts in Visual Perception

EvalNAS, ICLR 20
LR, CVPR 21
SuperNet, TPAMI 22
…

BEVFusion, NeurIPS 22
BEVHeight, CVPR 23
Rec.UNet, ICCV 19
SMSOP, ECCV 18
…

Address Key Challenge 2: Large Efforts in Data Annotation
- Auto-Labeling and pseudo labels to save human efforts
- High-performance and robust 3D perception framework

63



Reducing Human Efforts in Visual Perception

EvalNAS, ICLR 20
LR, CVPR 21
SuperNet, TPAMI 22
…

BEVFusion, NeurIPS 22
BEVHeight, CVPR 23
SMSOP, ECCV 18
…

AI System
- Role: Chief Architect
- Broader AutoML
- Deployed in Alibaba

Address Key Challenges 1 & 2: 
• Address both challenges together
• A platform to integrate our latest research advances

64

X 20

Before AutoML System V1

X ?X 1



21 3 4 5

Perception in
3D World

Here

65

Key Challenge 1: Large Efforts in Architecture Design
Key Challenge 2: Large Efforts in Data Annotation



Perception in 3D Understanding

- Brain of robotics
- Similar to human

- The only approach to 
understand the world!

- Data centric
- Deep Neural Networks

Perception

Vectorized space
3D digital world

Sensor Data
Camera LiDAR Radar etc.

66



3D Understanding Tasks

Perception

Multi-object
Tracking

Object
Detection

Point-cloud
Segmentation

Depth 
Completion

…

67



Why 3D Annotation with Multi-sensor Data Is Hard?

68

Red: GroundTruth

Example of 2D Object Box Annotation



Why 3D Annotation With Multi-sensor Data Is Hard?

69

Red: GroundTruth
Blue: Common annotator

Example of 3D Object Box Annotation
（Bird eye view of 3D point clouds)



Why 3D Annotation With Multi-sensor Data Is Hard?

70

Red: GroundTruth
Blue: Common annotator

Example of 3D Object Box Annotation
（Bird eye view of 3D point clouds)

Aggregating 100+ frames!

Can we replace annotators with a model?



AutoLabel System: Large model as Pseudo Labeler
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AutoLabel System: Large Model as Pseudo Labeler
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AutoLabel System: Large Model as Pseudo Labeler
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AutoLabel System: Large Model as Pseudo Labeler
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AutoLabel System: Large Model as Pseudo Labeler

75

Better 
Base Model

Reduce
Human Efforts=



• Fusion starts from point clouds, what if LiDAR fails?

State of The Art Multi-modality Base Model

Camera
Network

Multi-view 
2D Features

3D Features

(a) Point-level Fusion

Camera
Network

LiDAR
Network

(b) Feature-level Fusion

Camera
Network

LiDAR
Network

(c) Our BEVFusion

Query
Sample

3D
Detector

3D
Detector

3D
Detector

LiDAR
Network

Fuse

76

Existing Frameworks of camera-lidar fusion

[1] Yu et al. Robustness benchmark of camera-lidar fusion in autonomous driving. CVPR’23 Dataset Paper

Camera
Network

Multi-view 
2D Features

3D Features

(a) Point-level Fusion

Camera
Network

LiDAR
Network

(b) Feature-level Fusion

Camera
Network

LiDAR
Network

(c) Our BEVFusion

Query
Sample

3D
Detector

3D
Detector

3D
Detector

LiDAR
Network

Fuse



• Current fusion model 
depends on LiDAR!

• Perform poorly when data is 
noisy

• If no LiDAR, no results!

SoTA Base Model Fails w/o LiDAR Input

Predictions

77

Ground-truth

Visible in Camera

• Base model with 2 modalities should not fail when 1 missing

[1] Yu et al. Robustness benchmark of camera-lidar fusion in autonomous driving. CVPR’23 Dataset Paper



BEVFusion: A Simple yet Robust Base Model Framework

Camera
Network

Multi-view 
2D Features

3D Features

(a) Point-level Fusion

Camera
Network

LiDAR
Network

(b) Feature-level Fusion

Camera
Network

LiDAR
Network

(c) Our BEVFusion

Query
Sample

3D
Detector

3D
Detector

3D
Detector

LiDAR
Network

Fuse
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Existing Frameworks of camera-lidar fusion

Camera
Network

Multi-view 
2D Features
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[1] Liang et al. BEVFusion: A simple yet robust framework for camera-lidar fusion in 3D detection. NeurIPS’22, Spotlight, Supervised intern.



• The first robust framework that is agnostic to LiDAR failure
• +30 mAP compared to baselines
• Become a de-facto standard
• Many follow ups (MetaBEV, BEVFusion 4D, etc.)

Our BEVFusion Framework is Robust to LiDAR Failure

Ground-truthPredictions
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Accurate 
Prediction

[1] Liang et al. BEVFusion: A simple yet robust framework for camera-lidar fusion in 3D detection. NeurIPS’22, Spotlight, Supervised intern.



• BEVFusion + AutoLabel system surpasses human level annotation!
• By a large margin

BEVFusion Deployed in Alibaba
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Accuracy (mIoU)

Time (per box)

Cost (per box)

High-Quality
Ground-truth

91.35

0.005s

0.0001 RMB

83.12

25s

1 RMB

[1] Liang et al. BEVFusion: A simple yet robust framework for camera-lidar fusion in 3D detection. NeurIPS’22, Spotlight, Supervised intern.

(8.23+)

(5000x faster)

(10000x cheaper) 



BEVFusion Other Impact
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Leading in various tracks of leaderboard

Integration by various AV companiesNvidia Integration as a default AI solution
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AI System
ADLab AutoML System

Here
Key Challenge 1: Large Efforts in Architecture Design
Key Challenge 2: Large Efforts in Data Annotation
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• Automatic machine learning as a system
• My Role: Chief architect

Reducing human efforts by building an AI System
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• All steps are manually done

• Cost 90 days for 1 model
• Update an existing model
• Does not include first design time

Manual update of an existing deep learning model
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Step 1: Automatic deployment

• Automation for API services

• Across 6 platforms from hard-ware deployed

• Save ~30 days

85

Automate



• Automatic data mixture

• Lifelong learning to train the network

• Save ~5 days

• Without performance drop

Step 2: Use active learning for data mixture process
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Automate



Step 3: Incorporate NAS into AutoML System

• Incorporate NAS in 3D backbone
• Support quantization
• Save ~20 days
• Performance Improves ~10%
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Automate



Overview of the system

ADLAB
AutoML 
System

Data Collection

4G 
Upload

Drive 
Copy

Data Preprocess

Storage Indexing

Dataset

Process Inference

Mining & Annotation

Selection Visualization Annotation Auto-Label

Model Training

Training
With NAS

Quantization Evaluation

Dataset
Labeling

Trigger

Active 
Learning

Orgainzing

Continuous Integration & OTA

TorchScript Project C.I. Sim Test Real TestCompile OTA

Asset 
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Performance
• +10% mAP on object detection
• +5% mIoU on point-cloud segmentation
• Fix 150+ failures automatically

Efficiency
• Time spent: 90 à 35 (-60%)
• Manual steps: 192 à 7 (-97%)



Outcome: Deployment of AutoML System V1
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Carrier
Largest Autonomous Driving in logistic

200+ Cities

800+ Vehicles

50M+ Orders

X 20

Before AutoML System V1

X 1!X 1
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Conclusion 
Future Work
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Work in Progress: FusionAD End-to-end Autonomous Driving
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Work in Progress: FusionAD End-to-end Autonomous Driving
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Perception of a bus. FusionAD detects the heading correctly while distorsion exists in near range, but UniAD incorrectly predicts the heading.

Prediction of U-turn.  FusionAD consistantly predicts the U-turn earlier in all modes which aligns with the ground-truth trace, while UniAD still predicts the 

UniAD still predicts the move-foward, left-turn and U-turn modes until the very last second U-turn actually happens.



Work in Progress: FusionAD End-to-end Autonomous Driving

Hagedorn et al., Rethinking Integration of Prediction and Planning in Deep Learning-Based Automated Driving Systems: A Review, submitted TPAMI 2023



AutoML

• Assumption: Collected data contains all sufficient information!
• Is it really true? 

• What if we see a case never exists in any collected data?

Limitation of supervised learning with given dataset
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AutoML System V1Perception



Challenge: Perception Inevitably Fails when Lacking 3D Data 

Solution 1: Use post-processing to recall… 

Solution 2: Use Imagination to create 3D data
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Work in Progress: Imagination via 3D Data Generation
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• Background synthesis via segmentation mask control

• One of the first LiDAR Simulator without reconstruction
• LiDAR-NeRF

• Control 3D Object in 2D Annotation



BEVControl: Accurately Controlling Street-view Elements with 
Multi-perspective Consistency via BEV Sketch Layout



Other Work in 3D Perception

3D Backbone design Sensor Simulation Scene Editing

Open World Tasks Cross-dataset pretraining LLM Application

Text
LiDAR
Image

LLM +
SAM +
Tracking
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Summary
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What we learn from the company:
Research never ends! Engineering approaches can never be 
enough to resolve long-tail issue

Perception

• BEVFusion is the first robust framework to sensor failures
• Improves +30 mAP on various settings v.s. SoTA
• Large impact in/outside Alibaba
• FusionAD as next step towards end-to-end AD system

Data Synthesis

• First differentiable LiDAR Renderer
• Diffusion methods for images synthesis
• Future: Diffusion for multi-modality output ?



• From Object-Centric Understanding
• Towards Scene-level compositional understanding
• LLM as a general understanding module
• Encode traffic rules into Autonomous Driving

What‘s Next? 

Wayve Lingo-1



• Supervised Students

Thanks for all of my team members and collaborators!

• Academic collaborations

Prof. Di Lin Dr. Mathieu 
Salzmann

Prof. Xiaodan Liang

Prof. Hengshuang Zhao Prof. Xiaowei Zhou Dr. Rene Ranftl
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AutoLab: 
We are hiring!

Position
• Postdoc
• PhD (24 / 25 Fall)
• Research Assistant
• Remote Research Intern 

(6 month)

Possible Research Direction

• Pure exploration: 
Diving into the intelligence, AI Agent + Science

• Application driven: 
3D Perception, Autonomous Driving
Solving long-tail via AI System
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