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‘O How does Al Model interact with physical world?

Large Al Models
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‘O How does Al Model interact with physical world?

Large Al Models
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“?© Autonomous Driving Vehicle Is Also A Robot

Autonomous Driving
Understand and Act in 3D World

Heavy Truck Carrier
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PART |: General introduction

of Autonomous Driving
System (ADS)

Source: STDevConl19 7.5 Overview of ADAS-Active-Safety



Automotive ADAS Systems

Overall Automotive ADAS System
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Automotive ADAS Systems

ADAS Overview




Overview of ADAS Technologies




ADAS Sensors - Needed for Perception




The 5 Levels of Vehicle Automation

Adding Senses

» Accelerometers and Gyro
« Steering Wheel Angle
 Ultrasonic sensors

* Front Radar Sensor

+ Blind Spot sensor

* Rear View Cameras
Front View Cameras

» Surround View Cameras

Conditional
Automation
(Level 3)

Partial
Automation
(Level 2)

A

Driver Assistance
(Level 1)

Driver monitors Driver needed to
system at all be able to resume
times control

Driver in control

No Automation

(Level 0) Source: SAE andard J3016

Driver in control Levels 0-2 Human driver monitors the driving

environment

Levels 3-5 Automated driving “system” monitors

the driving environment

a‘.

High
Automation
(Level 4)

Driver is not

required for

specific use
cases

Learning to Drive

» Systems Networking
Sensor Fusion
Distance Measurement
Traffic Sign Recognition
» Lane Reconstruction
Free-path Definition
Precise Positioning
Real-time Mapping
Driving Rules
Implementation

Critical Arbitration

Full
Automation
(Level 5)

No Driver
Required



Sensor Fusion I1s Key to Autonomous

No sensor type works well for all tasks and in all conditions, so sensor
fusion will be necessary to provide redundancy for autonomous functions
Most likely used fusion solution in future . Good Fair . Poor

e LiDAR+Radar+
! Camera Radar LiDAR ‘Ultrasonic Camera

Object detection i . . i

Object classification E .

Distance estimation

Object edge precision

. @
Lane tracking E .
.

Range of visibility

Functionality in bad weather E

Functionality in poor lighting i . ‘

_____________________________________

Source: Woodside Capital Partners (WCP), “Beyond the Headlights: ADAS and Autonomous Sensing”, September 2016
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ADAS Vehicle Architectures




Vehicle

Distributed vs Centralized Processing

Distributed Processing with Object Level Fusion Centralized Processing with Raw Data Fusion

Intelligent Raw Data
Sense i Edge _— Sense Capture Think!
| Processing Think! ACT Q) ACT
— T — -
\\ Ultrasonic i \\ Ultrasonic
© . o )
® 0 Breaking { Lidar £ £ Early Data © Breaking
g [ Steering " O @ [=} .~ from 0 iteerlmg .
8 < (] 0 Accelerating S < S H - Sensors [ Accelerating
= = - © a ...
| P
o ”
4
‘E Late Sensor Fusion . F— Sensor Hybrid Fusion
. Camera | ) — Infotainment & Cluster
Infotainment & Cluster
(%]
g
]

51 Acceleration &
Rotation
‘ ETH/SPI/

NLOS

{

5 ) Acceleration &
Rotation
i

ETH/SPI/

\
|
|

Vehicle
State

:1 | [ ] mcumpupsp
[ ] moumpumsP 3 . e s
- RF | :; Sensors
Sensors
LOS: Line-of-Sight - Distributed Interfaces * Centralized Interfaces
NLOS: Non-Line-of-Sight « ETH, SPI, 12C, CAN, CAN-FD e ETH, SPI, 12C, CAN, CAN-FD

«  V2X, IMU, Wheel Odomerty, GNSS

+  RADAR, Ultrasonic, V2X, IMU, Wheel Odomerty, GNSS
+  MIPI(CSI-2), GMSL(Maxim), FPD-Link(Tl), PCle, HDBaseT(Valens)

+  MIPI(CSI-2), GMSL(Maxim), FPD-Link(Tl), PCle, HDBaseT(Valens)
* Radar, Ultrasonic

. Video Cameras?

. Lidar?

. Cameras

. Lidar?



Distributed vs Centralized Processing

Example Signal Processing Flow

Centralized or Not Centralized...That is the Question! = Answer: Both, Please.

Signal digitization

filtering
Windowing
Range & Doppler FFT
Detection
Tracking / Target
Creating

Object Classification

®
c
>
)
o
c
9
-
=
o
—
—
T8
1 4

transmitting, reflection
receiving/down-converting,
Prioritizing and reporting
objects on the network

High Bandwidth Link

» 0, >>1 Gbps
@
» ®, ~100Mbps or more s _= 5 =
2% £2¢3
» ©, 1-2Mbps §38 §§=5
Source: 2018 IHS Markit — “Autonomous Driving-The Changes to come” - a kel DEVICES

Source: ADI

*  What are the Data rates requirements for each sensor?
» Centralized (i.e. SERDES?) vs Distributed (i.e. ETH?)

«  Example: 4-5 Corner Radars are utilized in high end/premium vehicles.
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Vision (Cameras) System




Camera

Essential for correctly perceiving environment

Richest source of raw data about the scene - only
sensor that can reflect the true complexity of the @
scene.

The lowest cost sensor as of today

Comparison metrics:

» Resolution
 Field of view (FOV)
« Dynamic range

Trade-off between resolution and FOV?




Camera-Stereo

« Enables depth estimation from image data

All points on projective line to P map to p

| can locate the pointin 3D

'''''''

One camera

Add a
.~ second

camera

.
0 .
-----------

are matched

Find a point in 3D by triangulation!

Source: Sanja Fidler, CSC420: Intro to Image Understanding



The Next Phase tor Vision Technology
-g- O

. . . wr
From sensing to comprehensive perception >

Machine learning used already for object sensing

ON
Autonomous driving needs A
« Path planning based on holistic cues
« Dynamic following of the drivable area @ 150°

Deep learning is now being applied @O

Trifocal Camera system




Machine Vision: ST & Mobileye
EyeQ3™ 3rd Generation vision processor

* Detection of driving lanes  Detection of more objects, more precisely
» Recognition of traffic signs * More features required for automated driving
« Detection of pedestrians and cyclists , W Free-space Estimation, Road Profile
Seeing obstacles how the h ~\~ Reconstruction
. acles how the human eye sees o _ _
them 77 . | * Monitoring of environmental elements (fog, ice,
Adapti _ 4 osneyE rain) and their safety impact
» Adapting cruise spee :
PHNS .p Partnership | . Detailed understanding of the road conditions
* Emergency braking when car ahead slows allowing automatic suspension and steering
suddenly adjustment

* Highly automated vehicles

The Road to Full Autonomous Driving: Mobileye and ST to Develop EyeQ®5
SoC targeting Sensor Fusion Central Computer for Autonomous Vehicles




LIDAR Technology Overview

- LiDAR (light detecting and ranging, or “light radar”) sensors send
one or more laser beams at a high frequency and use the Time-of-
Flight principle to measure distances. LiDAR capture a high-
resolution point cloud of the environment.

« Can be used for object detection, as well as mapping an
environment

* Detailed 3D scene geometry from LIDAR point cloud

* LiDAR uses the same principal as ToF sensor,
but at much longer distances, minimum 75M for
“near field” and 150-200M for “far field”.

—> <— 2-10 nsec
H H H _ Measured | Photon travel » Speed of
: distance | time /2 light

\_
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LiDAR System




LIDAR Technigues

There are multiple techniques currently under evaluation for LIDAR

including rotating assembly, rotating mirrors, Flash (single Tx AUTOMOTIVE LIDAR
source, array Rx), scanning MEMS micro-mirrors, optical phased SYSTEMS
array.

© _Temotys

From a transmitter/receiver (Tx/Rx) perspective the following SCANNING
technologies need to be developed or industrialized for automotive.
«  MEMS Scanning Micro-mirror technologies With With
«  SPAD (Single Photon Avalanche Detectors) - Rx N SolR s
) 3D SPAD - Rx ( i ( Optical Phase b
* Smart GaN (Gallium nitride) | Spinning LIDAR Array LIDAR

Comparison metrics: b eloctro-optic
«  Number of beams: 8,16, 32, and 64 being common sizes ) __modulator
» Points per second: The faster, the more detailed the 3D point cloud can

B

/Liquid crystal and\

be

Rotation rate: higher rate, the faster the 3D point clouds are updated
Detection Range: dictated by the power output of the light source
Field of view: angular extent visible to the LIDAR sensor

Upcoming: Solid state LIDAR!

NON SCANNING

Flash LIDAR

Source: J. Cochard et.al., “LiDAR Technologies for the Automotive Industry”, Tematsys, June 2018



LIDAR Summary

Autonomous vehicles have been around for quite some time but only now the
technologies are available for practical implementations

No single sensor solution exists to cover all aspects — range, accuracy,
environmental conditions, color discrimination, latency etc.

« Multi-sensor fusion and integration will be a must

« Each technology attempts to solve the overall problem while having multiple limitations

Many LiDAR solutions (technologies) are available or being proposed with no
clear winners

Market is still in very early stage of development and experimentation

When and which technology or system will be widely adopted and mass
production starts is still unknown
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Radar Systems




RADAR Technology Overview

RADAR (RAdio Detection and Ranging) is one necessary sensor for ADAS (Advanced Driver Assistance
System) systems for the detection and location of objects in the presence of interference; i.e., noise, clutter,

and jamming.

Robust Object Detection and Relative Speed Estimation

Transmit a radio signal toward a target, Receive the reflected signal energy from target

The radio signal can the form of “Pulsed” or “Continuous Wave”
Works in poor visibility like fog and precipitation!

Automotive radars utilize Linear FM signal, Frequency

Modulated Continuous Wave (FMCW)
* FM results in a shift between the TX and RX signals that
allows for the determination of time delay, Range and
velocity.

Signal travel
time /2

]
Y ))))))
) >

Speed of
propagation in
medium (c in air)

J




Intrapulse Modulated Pulse Modulated Modulated Unmodulated

e Definitions:

RADAR Technigques

« Comparison metrics:
* Range
« Field of view
« Position and speed accuracy

» Configurations:
« Wide-FOV: Short Range
« Narrow-FOV: Long Range

Imaging Radar: Forms a picture of the object or area

Non-Imaging Radar: Measures scattering properties of the object or area

Primary Radar: Transmits signals that are reflected and received

Secondary Radar: Transponder that responds to interrogation with additional info

Pulsed Radar: High power signals are only present for a short duration and repeated at
specific intervals

CW Radar: Signal is present continuously
2013 Defence & Security Forum, EuMW

Source: Strategy Analytics Lunch & Learn the Market Session European Microwave Week 2013



Source: Rodhe & Schwarz - Automotive radar technology, market and test requirements, White paper — Oct 2018 (Salvo S. presentation)

Automotive Radar Vs. Automation Levels

<2014
Level 1
Driver Assistance

2016
Level 2
Partial Automation

2018
Level 3

Conditional Automation

2019/ 2020
Level 4
High Automation

> 2028
Level 5
Full Automation

v

ﬁ-
¢
Object detection

2x SRR

Applications
BSD, LCA

Object detection

2x SRR
1x LRR

Applications

BSD, RCW, LCA
ACC, AEB

High resolution
target separation

4x SRR
1x LRR

Applications

BSD, RCW, LCA
FCW, RCTA
ACC, AEB

&---umnnlllllll &-Quumnnllllll &-@mmm ||||||||mm&

3D detection

4x SRR-MRR
1x LRR

Applications
BSD, LCA, RCTA

AEB pedestrian
ACC, AEB

%

=\
.|||||||”||||||||
2

360° object recognition

2x USRR
4x SRR-MRR
2x LRR

Applications
AVP, PA

BSD, LCA, RCTA
AEB pedestrian
ACC, AEB

USRR - Ultra Short Range Radar
SRR - Short Range Radar

MRR - Medium Range Radar
LRR - Long Range Radar

BSD - Blind Sport Detection
LCA - Lane Change Assist

RCW - Rear Collision Warning

ACC - Adaptive Cruise Control
AEB - Automatic Emergency Breaking
FCW - Forward Collision Warning

RCTA - Rear Cross Traffic Alert
AVP - Automated Valet Parking
PA - Parking Assist
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GNSS/IMU System




GNSS/IMU Positioning

+ Global Navigation Satellite Systems and
Inertial Measurement Units GNSS/IMU

* Direct measure of vehicle states

Positioning, velocity, and time (GNSS)

« Varying accuracies: Real-time Kinematic (RTK-
short base line), Precise Point Positioning (PPP),
Differential Global Positioning System (DGPS),
Satellite-based augmentation system (SBAS-
lonospheric delay correction)

Angular rotation rate (IMU)
Acceleration (IMU)
Heading (IMU, GPS)




GNSS/IMU Positioning

More Precision Enables More Safety Features

Precise Positioning: Towards Autonomous Driving

Precise Positioning to enable < 30cm precision
* Lane detection

« Positioning data for V2X sharing

» Collision avoidance

* Autonomous parking

* Autonomous driving

« eCall accident location




Precise GNSS Is a Critical ADAS Sensor

Higher integrity requirements across safety-critical applications

« Semi- and Autonomous driving safety-related

applications requirements increase Safety critical levels of protection
o H|gher Safety levels U.':t: cggizcoalr;t;[g;octt?:rtml?_g\lf;vel
Bad Solution
« Added redundancy Doteciod
SAFE FAILURE
« More Robustness & integrity SAFE FAILURE
° Security ‘. V VPL

- Teseo APP (ASIL Precise Positioning) GNSS receiver,
new sensor based on ISO26262 concept with unique
Absolute and Safe positioning information Sonrmed eV

complementing relative positioning other sensor O eaATION
inputs(i.e. LIDAR, RADAR, etc.)

.,x Bad Solution

.. Declared Good

HHHHHHH

) ST‘s GNSS Receiver Family
:;:ﬂ for ADAS and AD Courtesy of Hexagon Pl

-




Precise GNSS Is a Critical ADAS Sensor

GNSS Accuracy in Automotive Environment (using PPP — Precise Point Positioning)

Horizontal Position Error Horizontal Position Error CDF
) 3.0 R T~ e e ~

Single Frequency —— Teseo APP Alone i
(i.e. L1) multi- e — Teseo APP with PI SWPE
constellation/code- : 0.8 -
phase(1msec '
modulation signal) 2.0

£ 2 0.6 - z

i e

5 1] :

e o]

w E 0.4 1

1.0 1
Multi Frequency (i.e.
L1, L2) multi- 0.2 1
constellation/carrier- 0 — Teseo APP Alone
phase WN —— Teseo APP with PI SWPE
0-0 Ll 1 |l 1 Al Ll 1 0.0 I 1 _—_—l_-__-l_____T _____
0 500 1000 1500 2000 2500 3000 3500 0.0 0.5 1.0 15 2.0 2 3.0
APP: ASIL Precise Positioning Time (s) Error/PL (m)

SWPE: Software Positioning Engine



Precise GNSS Is a Critical ADAS Sensor

GNSS Integrity — Protection Levels

Horizontal Position Error and Protection Level Horizontal Position Error and PL CDF
1.0 1
1.4 4 —— P| SWPE Error
— P| SWPE Protection Level
1.2 - 0.8 1
1.0
T 2 0.6 -
= 0.8 F
| .
5 2
| - o i
w 0.6 £ 04
0.4 4
0.2 1
03 WMN — Pl SWPE Error
- P| SWPE Protection Level
0.0 1 | 1 1 1 1 1 0.0 1 1 l————l———_;___—:_—_——l—-
0 500 1000 1500 2000 2500 3000 3500 00 02 04 06 08 10 12 14

Time (s) Error/PL (m)
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V2X System




Venhicle-to-Everything (V2X)

V2X

V2M
Vehicle-to-

\"/A'/ V2l
Vehicle-to- Vehicle-to-
Vehicle Infrastructure

V2D V2P
Vehicle-to- Vehicle-to-
Device/object Pedestrian

Motorcycle




EIRP [dBm] (not to scale)

FCC Spectrum Allocation for DSRC of TS
448 | —_—
w00 | GovtOnly
use Limit
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230 |- o ‘5 L Channel 175 - 5 < Channel 181 <=
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services on other “Service
TX Power +20dBm channels”

EIRP: Effective Isotropic Radiated Power
ITS: Intelligent Transportation Systems

Source: Federal Communications Commission FCC 03-324



DSRC

* Wireless Access in Vehicular Environments

e (WAVE) e
T te", » Amendment to IEEE 802.11-2012 to support WAVE/DSRC &
) ¥ (S  no authentication, no access point/no association T "

+ 5.8 —5.9 GHz OFDM )4

» Broadcasts BSMs 10 times per second

» Transmit power are about 100mW (20dBm
@Antenna Port - Per IEEE802.11-D.2.2
Transmit power level) with a nominal range of

300m (360° coverage)
« DSRC units share the same channel

Fast Network Acquisition & low
latency (<50msec)

Priority for Safety Applications
Interoperability

Security and Privacy (ensured through |
a root certification system)




C-V2X Basics
» C-V2X is a V2X radio layer:

¢ C'V2X |S DGVlce'tO'DeV|Ce (D2D) CommunlCathn Device-to-Device Commun|catlon
service added to the LTE Public Safety ProSe

(Proximity Services) Services g
» C-V2X makes use of the D2D interface — PC5 “ .

DSRC/

(aka Side Link) for direct Vehicle-to-Everything _—_
communication NS

 C-V2X takes the place of DSRC radio layer in \
relevant regions

« V2V, V2l and V2P V2X - Vehicle to Everything




C-V2X Basics
* C-V2X Transmission Mode 4:

* Mode 4 — Stand alone, distributed
« Uses GNSS for location and time for synchronization

Transmission Mode 4

()

- PC5 -

<—>®
© (0) © (0)




C-V2X Basics

* Transmission Mode 4:

» Out of Coverage operation: The transmitting
vehicle is not connected to the network

* No SIM card or inter-operator collaboration is r’E P

Transmission Mode 4

required

« Each vehicle performs its own scheduling and
allocation

* No dependency on inter-vehicle components ' v
(eNB, Allocation Server etc...)

* Mandatory for SAE, ETSI

PC5 PC5




C-V2X Alr Interface

* C-V2X s based on LTE (4G) uplink transmission - SC-
FDMA (Single
Carrier Frequency Division Multiple Access) signal:

* Asingle carrier multiple access technique which has similar
structure and performance to OFDMA

 Utilizes single carrier modulation and orthogonal frequency
multiplexing using DFT-spreading in the transmitter and frequency
domain equalization in the receiver

« Asalient advantage of SC-FDMA over OFDM/OFDMAis low Peak-
to- Average Power Ratio (PAPR). Enables efficient transmitter and
Improved link budget



N Summary

Both Technologies will do the JOB!
But:

* Industry is waiting for regulatory certainty, Government
Mandate is preferred!

» C-V2X has to reach automotive production maturity

 Implementation and deployment will depend on OEM system
architecture

* The market will demand standalone V2X module for OEMs
and aftermarket because V2X is a safety critical sensor.
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Sensor Fusion Example




Multi-sensor Fusion for State Estimation

EXtended Kalman FI Iter | This is a rule based fusion example,
| M U + G N SS U |_| DAR we will see another fusion later

If GNSS/LIDAR available

IMU Only

Y

Predicted
—| Motion Model —» ) CorrecteAd
State x, State g,
High rate ‘[

Position
Observation

BN Kalman Fusion

Low rate |

Source: “State Estimation and Localization for Self-Driving Cars”, Coursera by University of Toronto



PART II: Reducing Human
Efforts in Visual Perception




®© Autonomous Driving Lab, DAMO Academy Moze  HER
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Local Center Center Local

Carrier Heavy Truck Carrier

Carrier

Largest Autonomous Driving in logistic Research -> Product

Heavy Truck

Preliminary Exploration

@ 50+ routes across China [ﬁ Built 20+ Auto-Truck
% -
E'@ 800 <+ AutoVehicle Elg 30+ test vehicles Q\\Q\ Cainiao, Shentong
E] SOM 4+ orders @ T100M + km test milage cﬁ Release in 2027 5



“?© Autonomous Driving Vehicle Is Also A Robot

Autonomous Driving
Understand and Act in 3D World

Heavy Truck Carrier

ol



© Common Framework of Robotic System

Robot!

Pe,rcep‘tion

Understand the 3D world Planning Decide what to do Control in realistic space
Data creation Interact with the world

52



‘Q My Research Focus: Perception + Imagination

Robot
My Research Focus
| Perception - = Imagino\‘tion , E —| Decision —— Control
| i l
i Understand the 3D world Planning | Decide what to do Control in realistic space

Data creation Interact with the world

————————————————————————————————————————

53



‘Q My Talk Focus: Perception

My Talk Focus

—————————————————————

I
I
I
I
I
E P ercep‘tion ——T/“' Imo«]inod’,ion /\. Decision )——% Control
I I
I
i Understand the 3D world | Planning Decide what to do Control in realistic space
! ; Data creation Interact with the world

o4



®© What is Visual Perception?

Sensors Format

Sparse PCDs

-

Depth Cam. Dense PCDs

Tasks

SH)



®© Visual Perception in 3D

Sensors

Depth Cam.

Sparse PCDs

R
sl

Dense PCDs

Pet‘ception

Al Models

Imagination

=—> Decision

Tasks

Control




“© Convolutional neural network

Convolutional Neural Networks




“© Convolutional neural network

Convolution is template matching ...

* with a sliding window

* abstract templates

* similarity measured by dot product
* stronger activation, better matching




'Q Supervised Learning in Visual Perception

B

Architecture
De,sign

[ Tosk ] =, [rck‘tec‘tur%

Manual Design Architectures

B

Data
Annctation

(=) 2=

Large-scale Annotation

59



'Q What are Key Challenges in Supervised Visual Perception?

LaBel
20+

Architectures
n one proo(uc‘t?

More
Products?

1. Large Efforts in Architecture Design 2. Large Efforts in Data Annotation

60



®© Heavy Human Efforts in Visual Perception

fion

Heavy Efforts Hinder
Large-Scale Deployment!

61



© Reducing Human Efforts in Visual Perception

AutoML

EvalNAS, ICLR 20
LR, CVPR 21
SuperNet, TPAMI 22

Address Challenge 1: Large Efforts in Architecture Design
- ldentifying why NAS cannot surpass random search
- Our Landmark Regularization solution to address

We will not cover it in this lecture

62



© Reducing Human Efforts in Visual Perception

AutoML

AT

Pe,(“ce_p‘tion

BEVFusion, NeurlPS 22
BEVHeight, CVPR 23
Rec.UNet, ICCV 19
SMSOP, ECCV 18

Address Key Challenge 2: Large Efforts in Data Annotation
- Auto-Labeling and pseudo labels to save human efforts
- High-performance and robust 3D perception framework

63



®© Reducing Human Efforts in Visual Perception

AutoML _ 5 Perception B AutoMLéI Perception
) ystem
Al System
Role: Chief Architect
Broader AutoML

Deployed in Alibaba
Address Key Challenges 1 & 2:

* Address both challenges together
* A platform to integrate our latest research advances
.

XZO‘@'“ U

Before AutoML System V1




Key Challenge 1: Large Efforts in Architecture Design
Key Challenge 2: Large Efforts in Data Annotation

Perception In
3D World

AutoMLAI Pe_r‘ception
Syste_m

AutoML Perception

|

Here




o° Perception in 3D Understanding

Sensor Data > & > Vectorized space

Camera LIDAR Radar etc. 3D digital world

Perception

- Brain of robotics
- Similar to human

- The only approach to | |
understand the world! -t

- Data centric
- Deep Neural Networks

66



“© 3D Understanding Tasks

G

Perception

Multi-object
Tracking

T

Point-cloud
Segmentation

Object

Depth
Completion

67



“© Why 3D Annotation with Multi-sensor Data Is Hard?

Red: GroundTruth

Example of 2D Object Box Annotation

68



“© Why 3D Annotation With Multi-sensor Data Is Hard?

Red: GroundTruth
Blue: Common annotator

4 2
“

> o

Example of 3D Object Box Annotation
(Bird eye view of 3D point clouds)

69



“© Why 3D Annotation With Multi-sensor Data Is Hard?

Red: GroundTruth
Blue: Common annotator

Example of 3D Object Box Annotation
(Bird eye view of 3D point clouds)
Aggregating 100+ frames!

70



“© Autolabel System: Large model as Pseudo Labeler

UDAR Point Clouds Multi Frame

3D Obje,c‘t
Detection
Large Model

Mul‘ti-VIew Multi Frame Imo«je_s
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“© Autolabel System: Large Model as Pseudo Labeler

UDAR Point Clouds Multi Frame

High Quali‘ty 3D Bouno(ing box

o~
o

3D Obje,c‘t
Detection
Large Model

Mul‘ti-VIew Multi Frame Imo«je_s

Auto Labeled 3D Box
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“© Autolabel System: Large Model as Pseudo Labeler

UDAR Point Clouds Multi Frame

L L X
- ~

v
o )
'3
% 8 W)
gL P »
\ o 0

‘1»'

> 7 4

N

ﬁ%

Camera

High Quo.li‘tt/ 3D Bouno(ing box

3D Obje_c‘t
Detection
Large Model

Mul‘ti-view Multi Frame Imo«je_s

§ £1
—— [T A am
ﬁ\‘\ b & ﬁ‘:@ P i
i » ‘
\\\ o

Auto Labeled 3D Box

Parameters W
“

Auto Labeled 2D Box
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“© Autolabel System: Large Model as Pseudo Labeler

UDAR Point Clouds Multi Frame

('

"’w"“
3‘ » g/‘ '

L S

4

Mul‘ti-view Multi Frame Imo«je_s

3D Obje_c‘t
Detection
Large Model

é};l .

e

High Quo.li‘tt/ 3D Bouno(mg box

AT
has B
$
o A e
B P
X o
B
\\\ o

Auto Labeled 3D Box

|

Troack

Camera

ameters W

Mode,l

Auto Labeled 2D Box

Trocked Olaje,c‘ts
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“© Autolabel System: Large Model as Pseudo Labeler

3D OB\‘\ect
Detection

Better
Base Model

Reduce
Human Efforts

/, L.od‘ge, Model
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“© State of The Art Multi-modality Base Model

(a) Point-level Fusion (b) Feature-level Fusion

3
Detector

Existing Frameworks of camera-lidar fusion

* Fusion starts from point clouds, what If LIDAR fails?

[1] Yu et al. Robustness benchmark of camera-lidar fusion in autonomous driving. CVPR'23 Dataset Paper
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“© SoTA Base Model Fails w/o LiDAR Input

Predictions Ground-truth

* Base model with 2 modalities should not fail when 1 missing

[1] Yu et al. Robustness benchmark of camera-lidar fusion in autonomous driving. CVPR'23 Dataset Paper
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‘Q BEVFusion: A Simple yet Robust Base Model Framework

(a) Point-level Fusion

(b) Feature-level Fusion

3
LN

3D
Detector

Existing Frameworks of camera-lidar fusion

[1] Liang et al. BEVFusion: A simple yet robust framework for camera-lidar fusion in 3D detection. NeurlPS'22, Spotlight, Supervised intern.

| I(C) Our BEVFusion

A s A S
Camera i
Network LIDAR

57— (Fuse J—

3D
Detector
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‘Q Our BEVFusion Framework is Robust to LIDAR Failure

Predictions Ground-truth

A
ooy Rl R Accurate
. L Prediction

The first robust framework that is agnostic to LIDAR failure
+30 mAP compared to baselines

Become a de-facto standard

Many follow ups (MetaBEV, BEVFusion 4D, etc.)

[1] Liang et al. BEVFusion: A simple yet robust framework for camera-lidar fusion in 3D detection. NeurlPS'22, Spotlight, Supervised intern.
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“© BEVFusion Deployed in Alibaba

- ;M
= @y
High-Quality @ |
Ground-truth P (1Y
Lobeler Arwmy
Accuracy (mloU) 83.12
Time (per box) 25s
Cost (per box) 1 RMB

. L

Auto

La&:el
91.35 (8.23+)
0.005s (5000x faster)

0.0001 RMB (10000x cheaper)

* BEVFusion + Autolabel system surpasses human level annotation!

* By a large margin

[1] Liang et al. BEVFusion: A simple yet robust framework for camera-lidar fusion in 3D detection. NeurlPS'22, Spotlight, Supervised intern.
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BEVFusion Other Impact

¢ Star 578 .

Lidar Al Solution

This is a highly optimized solution for self-driving 3D-lidar repository. It does a great job of speeding up sparse
convolution/CenterPoint/BEVFusion/OSD/Conversion.

CUDA-BEVFusion CUDA-PointPillars

25FPS 23 FPS
67.66 mAP @ val 59.5 mAP @ val R
& = = =
B - m s d -
NETWORKS
LIBRARIES

CUDA & TensorRT solution for BEVFusion inference, including:

3D Sparse Convolution 3D Quantization Solution
« Camera Encoder: ResNet50 and finetuned BEV pooling with TensorRT and onnx export solution.

« Lidar Encoder: Tiny Lidar-Backbone inference independent of TensorRT and onnx export solution.

SCN FP16 ~ 19.5ms £ ~0
SCN INT8 ~ 14.1ms & MAP.drop =0.0081 « Feature Fusion: Camera & Lidar feature fuser with TensorRT and onnx export solution.
I — « Pre/Postprocess: Interval precomputing, lidar voxelization, feature decoder with CUDA kernels.
)] S . i
EE « Easy To Use: Preparation, inference, evaluation all in one to reproduce torch Impl accuracy.

+ PTQ: Quantization solutions for mmdet3d/spcony, Easy to understand.

Preprocess Inference(GPU+DLA) Visualize
-
Image Backbone

)
- Fusion model r t

Lane Detection Task
in8 &7
- = - —
PTQ/QAT
3D Sparse Conv

|i§§
I

Nvidia Integration as a default Al solution

nuScenes detection task

Leaderboard nuScenes tracking task

Search:

Leaderboard

> 20230329 BRI+ Method Metrics
Date Name  Modaliies Map Exemal AMOTA AMOTP MOTAR MOTA MOTP RECALL ~ GT  MT ML  FAF

> 2023-03-25 BEVFusion4D-e data data (m) (m)
> 20221121 MMFusion-e Ay - AN~ AN~

> 20230301 ; Cameralid no  no 075 042 0795 0621 0295 0783 17081 596 1649 61819 1
> 20221017 MegFusion GRS

> 220803 CAMOMOT  Gemeralid no  no 0753 0472 0800 0635 0297 0791 1081 5894 1546 56701 1
> 20220627 Decpineracton-e

> 222062  BEVRSN  Cemerali no  no 0741 0403 0780 0603 0293 0779 1081 Sl 1761 64759 €
> 20603 BEVRusione

> 2221112 MSMDRusionbase Comers ik no  no 0740 0549 0827 064 0309 0763 1081 S724 133 48774 €

20220626 Deepinteraction-ial

> 20230309  FocalFormer3DF Camers, Lid  no no 0739 0824 0618 0303 0759 17081 5611 1537 50013 €
> 20220113 FusionVPE .,

> 20221125 3DMOTFormerB8 Camera, Lid  no no 0725 0822 0609 0306 0742 17081 5680 1728 55118 ¢

2| 20230201 | MSMDRusioc Tl > 20211029  Transfuson  CameraLid no no o078 0810 0607 0309 0758 17081 5635 1560 52577 €

> 20210525 Centerpointfusion > 20230309  Focalformer3D  Lidar no o o7ts 0808 0601 0309 0750 17081 5615 1550 54165 €

| > 20221111 VoxelNext Lidar no no 0710 0785 0600 0308 0765 17081 5529 1728 59498 €

Leading in various tracks of leaderboard

W 248 2 NIO

R W

HAOMO.AI ALIBABA DAMO ACADEMY ¥ HUAWEI

Integration by various AV companies
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AutoML

Al System

ADLab AutoML System

Perception

AutoMLAI Pe,r‘ception
Stlste,m

Key Challenge 1: Large Efforts in Architecture Design

Key Challenge 2: Large Efforts in Data Annotation

L\ 3
N1Aoms %é%



'Q Reducing human efforts by building an Al System

* Automatic machine learning as a system
* My Role: Chief architect

Tuming research into proo(uc‘tiv?ty!

AutoML

[ Human Op j——%[ AutoML Op ]

=)

1’%7

Perception

— AutoML
Perception
] Sllste,m

Br}dge The goap between

academic research and indus‘tm/.
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© Manual update of an existing deep learning model

human-i Z
Le_ge_nds (_t‘:\e?a o"P J ( Data ] [ Automatic ]

[Emluat:on] ‘>£ Deploy ]

I\ \ * All steps are manually done
J i * Cost 90 days for 1 model
E T’::":\eyl\ ] [F“"“‘“e A"“"/S‘SJ * Update an existing model
4\ ! ¢ * Does not include first design time
| |

84



'Q Step 1: Automatic deployment

human-i /
Le_ge_nds (—tukefll:, o:’ j [ Data ] [ Automatic ]

Automate
( Evaluation J {:‘}[ Deploc/ J

|

\

| {

[ Model j (Fodlur‘e Analysis
’T'radning

Data x>
Mixture 3

( Data J

,""\";,

 Automation for API services

* Across 6 platforms from hard-ware deployed
* Save ~30 days
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© Step 2: Use active learning for data mixture process

human-i Z
Le_ge_nds (_t‘:\e:‘:) o:’ J [ Data ] [ Automatic ]

[ Evaluation j }[ De_ploy J

\
\E/
|
Moo(e_l Failu AnoJ EJ
'T'r"odning j [ 2 2

Automatic data mixture

Lifelong learning to train the network

Save ~5 days

Without performance drop

|
NN

o

&

9
N\
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'Q Step 3: Incorporate NAS into AutoML System

human-i /
Le_ge_nds (—tuhe_?c, o:’ J [ Data ] [ Automatic ]

f Automate \
| [ Evaluation ] Y Deploy j * Incorporate NAS in 3D backbone
AutoML : : L y . .
Ve ¢ \/ * Support quantization
Algorithm | \/
Ejbedded: . * Save ~20 days
I [ Moo(e,l J \ [Fodlur‘e_ Analt/sisj P f | 1 O(y
| Training | * Performance Improves ~10%
- l i P

, :
Lipelov\g \

Data i
Mixture - Data

60 days




Overview of the system

8 & O

Storage  Indexing  Labeling

Data Collection

s,

2 89

Upload Copy Trigger

A

O K= N i

Active

. Selection  Visualization ~ Annotation Auto-Label
Learning

r
|

—v
—X

Continuous Integration & OTA

AR ¥ M odm ®
OTA

Compile  TorchScript Project C.I.  Sim Test Real Test

Dataset

(& g

Orgainzing Process

:
::: ’
il

Inference

Model Training

Training

With NAS Quantization

Yo

Evaluation

(o]

Dataset

[%

Asset
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“© Overview of the system

N & 0 -

Active Selection  Visualization ~ Annotation Auto-Label

=
Performance

« +10% mAP on object detection —
« +5% mloU on point-cloud segmentation A 5 [ @ :[E]: (5 o0 & R

e Fix 150+ failures automatically

Efficiency . )
« Time spent: 90 = 35 (-60%) Cb ‘ ode
*  Manual steps: 192 = 7 (-97%) e o A w [§

i izati i Asset
Upload Copy Trigger With Nag  Quantization  Evaluation

—V
— X

Continuous Integration & OTA

A O 2 o ®

Compile  TorchScript Project C.I.  Sim Test Real Test OTA
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‘Q Outcome: Deployment of AutoML System V1

o Perception |—— | Imagination Decision >> Control
Carrier = == &

Largest Autonomous Driving in logistic

PDCRRX EHICM 1

15T 200+ cities
IVZIQ 800+ venhicles

[¥] ders
@ X 20

Al X1

Before AutoML System V1

v
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Conclusion
Future Work

L\ 3
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‘Q Work in Progress: FusionAD End-to-end Autonomous Driving

Perception -]

-—-3 Prediction -----)l Planging iy
' L C | Camera Q

(a) Post Fusion-based Pipeline — _l
LC i=—| BEV-Level Fusion]

»| Predictj l
Perception 3| Planging o /:::/J = I—UQ? ,l,
(= L )

»| Planping
(b) Visual-centric End-to-end Pipeline (c) Proposed FusionAD

_______________

!}\\ Fused v
Q BEV Feature FMSPaP Planning
2 g y
y, Prediction g /
Y 4 \
v Temporal Self-Attn = Pekngticn ™

!
I
!
I
I
!
1
I
I
I
|
I
!
I
!
I
I
I
I
|

77 Add & Norm
s . pOS’UOn
velocity
> Images Cross-Attn | . Modality Self-Attn ® heading Ego
- g [ Status
|
: .
' Add & Norm r )
LOAR Encoder ' 4 : ~ Tracking i - Refinement *
LIDAR BEV = Points Cross-Attn e 3 Network "Q'
g - ' Collision Loss

)
1

1

1

I

1

1

1

1

1

1

T —

' g
i

1

1

1

1

|

1

1

1

1

I

Feature '

Fusion Encoder ; :
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‘o Work in Progress: FusionAD End-to-end Autonomous Driving

we-: 2.02 after: 2.02

KEEP FORWARD . am—. KEEP FORWARD o

UniAD

= ==

"'-':!éung -Fuum i

b r
b r
- ¥ X - w 1 - -
=11 |
- 111N b . T
’ Ll - ¥ . ~ N
N e i . =3 < ( | 7 |
. 3 - A BA R / RN d
e / =)
- - B - - 4 T
: | m
.
F

= =S

(o

i
\

‘ \
: 2.33 after: 2.33 - B
= . )
(T] — - T v —
KEEP FORWARD Il T mmmm— .. KEEP FORWARD Ul e —

Prediction of U-turn. FusionAD consistantly predicts the U-turn earlier in all modes which aligns with the ground-truth trace, while®YniAD still pr



.O Work in Progress: FusionAD End-to-end Autonomous Driving

Prediction Planning Manual IPP
1988 j 1988 —§——@ ALVINN (9] 1988 —]

s e : @——@ SafePathNet [81]
2023 —

2016 2016 — 2016 —@——@ PAC[128]

$——@ Bojarski-CNN [34]

2017 2017 _-’_‘KN'L““ 18] 2017 _- -H GameFOrmer ][131]

DESIRE (8

MTP {57]

2018 2018 —— 2018 ——’_’ e UniAD [132]
S e, ] .
i _ FusionAD [133]

2019 e 2019 :a 5’2’:&2@3: :‘6]‘ 2019 —]
o, | Ego-Agents Relation (5.2) | Safety & Contingency (5.3)
$—& NMP [65] .
g imaay ® Unknown No Cost
T T R S ® Robot Leader ———— Marginalized
IS @ T =t pmren ® Human Leader Worst-Case
o ~ - ” g o @ Joint Planning Joint Cost
T . ® Co-Leader Contingent
$—$ VI £4—— SatetyNet (50]
= iy B ] Goal Conditioning (4.3) Planning Paradigm (4.4)
— I @ None Regression
s h - € Submodules Cost Function
g rovma © Input Feature Hybrid
S:cens;:l;}:u::i:mzﬁnn (3.1) | Interaction glvl:nEel (3:2) Output Sp}c‘::i:z,;l: ) . R Ou t e C 0 S t
Txaietk::Decoding(a.zl Deme Planning Paradigm (4.4) ’ Route Attention

Hagedorn et al., Rethinking Integration of Prediction and Planning in Deep Learning-Based Automated Driving Systems: A Review, submitted TPAMI 2023




© Limitation of supervised learning with given dataset

I P R e W SR I R N
Architecture |
{ De$3gn : [ Evaluation j __>[ Deploc./ j
:
I

AutoML

|
|
NAS /I\ : A/
= Al orithm | !
C Al o Embedldesd | :
Anno:a;Ion I [ MOO(QI J : E:odluf‘e Analysisj
Au’toMl_ I\ Training I
NAS S 7/&\ ]

) i S e, T

Mol | \JV
Data
L.oJ-:el

Perception AutoML System V1
* Assumption: Collected data contains all sufficient information!

* |s it really true?
* What If we see a case never exists in any collected data?
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‘Q Challenge: Perception Inevitably Fails when Lacking 3D Data
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‘Q Work in Progress: Imagination via 3D Data Generation

Imag?no\‘tion

Data synthe_szs

SPADE"

- -9

Ours

Demo

Control 3d in 2d:
content generation in 2D space for outdoor unbounded scenes

Long wony to go &

* Background synthesis via segmentation mask control

* Control 3D Object in 2D Annotation

* One of the first LIDAR Simulator without reconstruction
 LIDAR-NeRF
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BEVControl: Accurately Controlling Street-view Elements with
Multi-perspective Consistency via BEV Sketch Layout

Kairui Yang'* Enhui Ma'* Jibin Peng'! Qing Guo? DiLin!" Kaicheng Yu?
'Tianjin University *IHPC and CFAR, Agency for Science, Technology and Research, Singapore >Westlake University

"’ Tianjin University

Centre for

f‘ Frontier Al & : m
Research ~ 'a'
CFAR WESTLAKE UNIVERSITY



— forward

Memory Bank
« backward

fusion & upda(eT * no gradient

-
Current Singleframe ‘

Input Detector Output

Dynamic Training Sequence Length (DTSL)

stream 2|3|4‘5|s|7‘3‘9|1o|11||2|13|14|15‘~-~
4! t d ; >

flush flush flush flush flush
memory memory memory memory memory

Open World Tasks

Text
LIDAR

Image

Py s
e 9

NN

‘Q Other Work in 3D Perception

Sensor Simulation

Novel LiDAR View Synthesis

@—‘ Train View
P —
%+~ Novel View St ——
=
/;J
s T
P ‘\ ................ ./‘
=
’ e
= |
238
S —
=

Cross-dataset pretraining

[ (a) Multi-dataset Point Prompt (Pre-)Training

Prompt Adapter

! juowuSiry [eonosore) |

Point Cloud Backbone

[ oAnoalq0 Fururexr(-o1g) |

POINTCEPT

Point Cloud Perception Codebase

Scene Editing

representation ground truth images

78
qF

'/” ) @ AN

- "\ ( Generating semantic masks \ [~ 5 . N
. Input with inpainting network Learning a semantic ﬁ.feld
) )
. [_L> & [_l>
. A AN {; J
(" Learning a neural scene \ [  Generating pseudo )\ [  Rendering multi-view

consistent semantic masks

Optimizing 3D neural fields from a single semantic mask

LLM Application

LLM +
SAM +
Tracking
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°© Summary

Dota
Annctation

Al
_ Label \
Data e |
Label e %

Perception

Data Synthesis

What we learn from the company:
Research never ends! Engineering approaches can never be
enough fo resolve long-tail issue

BEVFusion is the first robust framework to sensor failures
Improves +30 mAP on various settings v.s. SOTA
Large impact in/outside Alibaba

FusionAD as next step towards end-to-end AD system

First differentiable LIDAR Renderer
Diffusion methods for images synthesis
Future: Diffusion for multi-modality output ?
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“© What's Next?

* From Object-Centric Understanding

* Towards Scene-level compositional understanding
* LLM as a general understanding module

* Encode traffic rules into Autonomous Driving

Perception

eeeeeeeeeeeeeeee

angu
MMMMM

+
. . )
I'm edging in due to the slow-moving traffic. \_4

Wayve Lingo-1




'Q Thanks for all of my team members and collaborators!

* Supervised Students * Academic collaborations

Tingting Liang (Advisor: Yongtao Wang) PhD Student, Peking University

« Topic: Towards robust camera-lidar fusion framework for 3D detection. Incoming research engineer at Alibaba Group

Tao Tang (Advisor: Xiaodan Liang) PhD Student, Sun Yet-sen University

* Topic: Towards generic 3D understanding via LIDAR point cloud simulation

Yixing Liao (Advisor: Hengshuang Zhao) PhD Student, University of Hong Kong

« Topic: Overcoming the domain gap via LIDAR point cloud translation with implicit fields

Xiaoyang Wu (Advisor: Hengshuang Zhao) PhD Student, University of Hong Kong

e Topic: Point Prompt Tuning: Cross dataset 3D indoor scene understanding.

Shangzhan Zhang (Advisor: Xiaowei Zhou) MSc Student, Zhejiang University

e Topic: Painting 3D in 2D: Novel view synthesis of natural scenes

Hu Zhang (Advisor: Xin Yu) PostDoc, Queensland University i . .
« Topic: Open-world 3D object detection with cross modality features, in preparation of NeurlPS 2023 P rof D | Ll n D r M a t h | e U P rOf X I a Od a n I_I a n g
Bicheng Guo (Advisor: Jiming Chen) PhD Student, Zhejiang University

« Topic: Detection directly from neural implicit fields. S a IZ m a n ﬂ
Sihao Lin (Advisor: Xiaojun Chang) PhD Student, Moonash University

« Topic: Knowledge distillation via semantic aware transformer

Jiqi Zhang (Advisor: Xiaodan Liang) MSc Student, Sun Yet-sen University

« Topic: Self-supervised learning in point cloud perception.
Yassine Benyahia (Advisor: Anthony Davison) MSc Student, EPFL

« Topic: Overcoming multi-model forgetting in neural architecture search

Christian Sciuto (Advisor: Claudiu Musat) MSc student, EPFL

« Topic: Benchmarking the robustness of neural architecture search

Prof. Hengshuang Zhao Prof. Xiaowei Zhou  Dr. Rene Ranftl
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Autolab:
We are hiring!

Position

Postdoc
PhD (24 / 25 Fall)
Research Assistant

Remote Research Intern
(6 month)

Possible Research Direction

Pure exploration:

Diving into the intelligence, Al Agent + Science
Application driven:

3D Perception, Autonomous Driving

Solving long-tail via Al System
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THANK YOU!

. 0571-86886859 FENISNMNH AR XBRIE600SARKFE(=EKRKX), 310030
0571-85271986 No. 600 Dunyu Road, Sandun Town, Xihu District, Hangzhou,
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